Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian Laplace Distribution on the Space of Symmetric Positive Definite Matrices

The Riemannian geometry of the space Pm, of m × m symmetric positive definite matrices, has provided effective tools to the fields of medical imaging, computer vision and radar signal processing. Still, an open challenge remains, which consists of extending these tools to correctly handle the presence of outliers (or abnormal data), arising from excessive noise or faulty measurements. The prese...

متن کامل

Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices

This paper analyses the kernel density estimation on spaces of Gaussian distributions endowed with different metrics. Explicit expressions of kernels are provided for the case of the 2-Wasserstein metric on multivariate Gaussian distributions and for the Fisher metric on multivariate centred distributions. Under the Fisher metric, the space of multivariate centred Gaussian distributions is isom...

متن کامل

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Over the past few years, symmetric positive definite matrices (SPD) have been receiving considerable attention from computer vision community. Though various distance measures have been proposed in the past for comparing SPD matrices, the two most widely-used measures are affine-invariant distance and log-Euclidean distance. This is because these two measures are true geodesic distances induced...

متن کامل

Riemannian geometry on positive definite matrices

The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function φ in the form K D(H,K) = ∑ i,j φ(λi, λj) −1TrPiHPjK when ∑ i λiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7→ ...

متن کامل

Wasserstein Riemannian Geometry of Positive-definite Matrices∗

The Wasserstein distance on multivariate non-degenerate Gaussian densities is a Riemannian distance. After reviewing the properties of the distance and the metric geodesic, we derive an explicit form of the Riemannian metrics on positive-definite matrices and compute its tensor form with respect to the trace scalar product. The tensor is a matrix, which is the solution of a Lyapunov equation. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2017

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2017.2653803